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Abstract
Information leaks are the most prevalent type of vulnerabili-
ties among all known vulnerabilities in Linux kernel. Many
of them are caused by the use of uninitialized variables or
data structures. It is generally believed that the majority of
information leaks in Linux kernel are low-risk and do not
have severe impact due to the difficulty (or even the impos-
sibility) of exploitation. As a result, developers and security
analysts do not pay enough attention to mitigating these vul-
nerabilities. Consequently, these vulnerabilities are usually
assigned low CVSS scores or without any CVEs assigned.
Moreover, many patches that address uninitialized data use
bugs in Linux kernel are not accepted, leaving billions of
Linux systems vulnerable.

Nonetheless, information leak vulnerabilities in Linux ker-
nel are not as low-risk as people believe. In this paper, we
present a generic approach that converts stack-based informa-
tion leaks in Linux kernel into kernel-pointer leaks, which can
be used to defeat modern security defenses such as KASLR.
Taking an exploit that triggers an information leak in Linux
kernel, our approach automatically converts it into a highly
impactful exploit that leaks pointers to either kernel functions
or the kernel stack. We evaluate our approach on four known
CVEs and one security patch in Linux kernel and demon-
strate its effectiveness. Our findings provide solid evidence
for Linux kernel developers and security analysts to treat
information leaks in Linux kernel more seriously.

1 Introduction

For performance concerns, unsafe programming languages,
such as C and C++, are still prevalently used in the imple-
mentation of operating system (OS) kernels and embedded
systems. While these unsafe languages may allocate mem-
ory on stack or in the heap for variables, these variables may
not be initialized before being used. When a variable is used
without proper initialization (which can be caused by either
a programming mistake or padding bytes in a struct inserted

by compilers [22]), the memory values that were present at
the same location of the variable before it was allocated—
called stale values—will be read and used. When these stale
values are copied from the kernel space to the user space, user-
space programs will be able to access them, which causes an
information-leak vulnerability if the information contained in
the stale values is important.

The use of stale values in Linux kernels can lead to
severe security problems, which have been studied in the
past [10, 16, 21]. Moreover, these stale values can pose severe
security threats without being directly used in the kernel. For
example, modern kernel security defenses, such as Kernel
Address Space Layout Randomization (KASLR), depend on
keeping kernel addresses secret from user-space programs.
When attackers get lucky and recover kernel pointer values
through leaked information (stale values) from the kernel
space, they can defeat KASLR [15, 25]. Likewise, attackers
may leak cryptographic keys that are stored in the kernel
space.

Unfortunately, in Linux kernel, information leaks that are
caused by uninitialized data are common. A study shows that
information leak vulnerabilities that are caused by the use of
uninitialized data are the most prevalent type of vulnerabil-
ities among the four major types of vulnerabilities in Linux
kernel [8]. Within the past two years, KernelMemorySani-
tizer (KMSAN) discovered over 100 uninitialized data use
bugs in Linux kernel through fuzzing [5]. Worse, due to the
difficulty (or the impossibility) of exploiting the majority of
information leak vulnerabilities or using them in high-risk
exploits (such as remote code execution or local privilege es-
calation), these vulnerabilities are commonly believed to be of
low risks. As a result, many uninitialized data uses do not get
sufficient attention from developers or security researchers,
are not assigned any CVE entries1, and in some cases their
corresponding patches are not merged into Linux kernel for a
long time [16].

1 Here is an example of a security patch that fixes a stack-based informa-
tion leak vulnerability: https://github.com/torvalds/linux/commit/
7c8a61d9ee. No CVE was ever assigned for the vulnerability.

https://github.com/torvalds/linux/commit/7c8a61d9ee
https://github.com/torvalds/linux/commit/7c8a61d9ee


Total Stack-based Heap-based # of exploits

# of CVEs 87 76 (87%) 11 (13%) 0

Table 1: The number of information leak CVEs that are related
to uses of uninitialized data between 2010 and 2019. The
majority of these CVEs are stack-based information leaks.
There are no publicly available exploits for these CVEs. Only
one out of these 87 CVEs warns about possible leaks of kernel
pointers and potential KASLR bypasses.

Table 1 shows the statistics of 87 Linux kernel CVEs that
are related to uninitialized data uses and are reported be-
tween 2010 and 2019 [6]. The majority of these CVEs are
stack-based information leaks. Evaluating the severity of these
CVEs is extremely difficult since no public exploit is avail-
able for any of them. Even if a public exploit is available,
using these vulnerabilities to leak key information usually
requires manual and complicated manipulation of the kernel
layout, which is costly and time-consuming. Therefore, all but
one CVE (CVE-2017-1000410) mentions anything about the
potential of leaking kernel pointers and bypassing KASLR,
which leaves an impression to the general public that these
vulnerabilities are of low security impact.

The situation about information leaks in Linux kernel is ex-
tremely concerning. In this paper, we demonstrate the actual
exploitability and severity of information leak bugs in Linux
kernels by proposing a generic and automated approach that
converts stack-based information leaks in Linux kernels into
vulnerabilities that leak kernel pointer values. Specifically, we
focus on leaking pointer values that point to kernel functions
or the kernel stack. These leaked kernel pointer values can be
used to bypass kernel defenses such as KASLR, which is an
essential step in modern Linux kernel exploits [13].

Our proposed approach takes as input an exploit that trig-
gers a stack-based information leak bug, analyzes the exploit
to identify locations where stale values are coming from, and
reasons about an attack vector that places kernel pointer values
at these locations. It is worth mentioning that our approach
supports leaking kernel pointers when the size of the leaked
stale value is less than a full 64-bit pointer (8 bytes). We
evaluate our approach on five real-world Linux kernel vulner-
abilities (including four CVEs and one bug that was reported
by KMSAN) and demonstrate its generality and effectiveness.
The existing Common Vulnerability Scoring System (CVSS)
scores of three of the above CVEs are 2.1 (on a scale of 0 to 10,
higher is more severe), which imply that “specialized access
conditions or extenuating circumstances do not exist, even
though there is considerable informational disclosure” [2–4].
Our findings can be used to assist CVSS in correcting the
scoring and assessment of information leak vulnerabilities in
Linux kernels, and raise awareness in the security community
of these vulnerabilities.
Contributions. This paper makes the following contributions:

• We disclose the actual severity of information leak vul-
nerabilities in Linux kernel. These vulnerabilities are
easier to exploit and are more severe than what is gener-
ally believed.

• We identify common challenges in exploiting
information-leak vulnerabilities. We then propose
a generic and automated approach that converts a
stack-based information leak vulnerability in Linux
kernel to an exploit that leaks kernel pointer values.

• We implement our approach and evaluate it on five real-
world vulnerabilities (four CVEs and one fixed bug in
the upstream Linux kernel). The evaluation results show
that our proposed approach is effective.

In the spirit of open science, we have released the source
code of our tool and the exploits that we developed as part
of our research. The repository is at https://github.com/
sefcom/leak-kptr.

2 Background

In this section, we provide a technical overview of stack-based
information leaks in Linux kernel, and how leaked kernel
pointer values can be used in more severe types of kernel
exploits.

2.1 Information Leaks from the Kernel Stack
Each thread in the Linux has a kernel stack, which is a mem-
ory area that is allocated in kernel space. Depending on the
specific Linux version and configuration, the sizes of the ker-
nel stack differ. To maximize the locality, the kernel stacks are
usually small in size (8KB or 16KB on x86-64). Therefore, the
memory space for the kernel stack is very frequently reused
between different kernel stack frames. Lu, et al. showed that
90% syscalls only use less than 1,260 bytes of the kernel
stack space, and the average stack usage is less than 1,000
bytes [16]. This reusability of the kernel stack has resulted in
good performance and high efficiency but also has contributed
to unexpected leaks of stale values that are left on the kernel
stack.

We use two real-world vulnerabilities to demonstrate a
kernel information leak vulnerability through uses of unini-
tialized variables on the stack. Listing 1 shows an example
of a kernel information leak caused by a use of uninitial-
ized stack memory. In the adjtimex syscall, the txc->tai
field is not initialized and is later used as an argument of
compat_put_timex. Thus, the compat_put_timex function
copies the tai field of the txc object to a local variable (tx32
object), which is eventually copied to the user space and
causes a kernel data leak. Listing 2 shows an another example
of kernel information leak. Although all fields of the map ob-
ject are initialized by the rtnl_fill_link_ifmap function,

https://github.com/sefcom/leak-kptr
https://github.com/sefcom/leak-kptr


1 /* file: kernel/time/time.c */
2 COMPAT_SYSCALL_DEFINE1(adjtimex , struct

compat_timex __user *, utp)
3 {
4 struct timex txc; //stack object
5 int err, ret;
6

7 err = compat_get_timex(&txc, utp);
8 if (err)
9 return err;

10 ret = do_adjtimex(&txc);
11

12 //the above code does not write the ‘tai’ field
of the ‘txc’ struct

13 err = compat_put_timex(utp, &txc);
14 ...
15 }
16

17 /* file: kernel/compat.c */
18 int compat_put_timex(struct compat_timex __user *

utp, const struct timex *txc)
19 {
20 struct compat_timex tx32;
21 memset(&tx32 , 0, sizeof(struct compat_timex))
22 tx32.modes = txc->modes;
23 ...
24 //copy the uninitialized data (‘tai’)
25 tx32.tai = txc->tai;
26

27 //kernel data leak to the user-space
28 if(copy_to_user(utp, &tx32 , sizeof(struct

compat_timex)))
29 return -EFAULT;
30 return 0;
31 }

Listing 1: A real-world vulnerability (CVE-2018-11508) in
which an uninitialized field of the time struct in the stack
caused the information leak.

the object still contains uninitialized 4 bytes padding gener-
ated by a compiler. Therefore, an unintended kernel data leak
occurs when the stack object is copied to the user space by
calling the nla_put function (on Line 14).

In both examples, the size of leaked data is 4 bytes, which
is not enough to fully accommodate an 8-byte pointer value
in 64-bit Linux. However, we will show in Section 5.4 that
even a 4-byte leak is sufficient for leaking randomized kernel
addresses.

2.2 Uninitialized Data in Linux Kernel Ex-
ploitation

As shown in Table 2, prior research work mostly focuses on
controlled uses of uninitialized data in Linux kernels [11, 16,
25]. Our paper has a totally different goal: We focus on ex-
ploiting existing stack-based information leak vulnerabilities
and converting them into high-impact vulnerabilities that leak
sensitive data from the kernel. To the best of our knowledge,
there is no prior research on the exploitation of stack-based

1 /* file: net/core/rtnetlink.c */
2 static int rtnl_fill_link_ifmap(struct sk_buff *

skb, struct net_device *dev)
3 {
4 //all fields in the map object are initialized
5 struct rtnl_link_ifmap map = {
6 .mem_start = dev->mem_start ,
7 .mem_end = dev->mem_end ,
8 .base_addr = dev->base_addr ,
9 .irq = dev->irq,

10 .dma = dev->dma,
11 .port = dev->if_port ,
12 };
13

14 //kernel data leak to the user-space
15 if(nla_put(skb, IFLA_MAP , sizeof(map), &map))
16 return -EMSGSIZE;
17 return 0;
18 }

Listing 2: A real-world vulnerability (CVE-2016-4486)
which illustrates that padding bytes inserted by a compiler
can bring the information leak.

information leak bugs in Linux kernel for leaking sensitive
information.

2.3 Abusing Kernel Pointer Values

Bypassing KASLR. Commonly used in OS kernels, KASLR
is a defense mechanism that randomizes the base address of
the kernel (where the kernel code is loaded) at boot time. This
technique was introduced to raise the bar of kernel memory
corruption attacks (e.g., buffer overflows and use-after-free
attacks) and is one of the most effective defenses in modern
OS kernels. Systems with KASLR enabled can successfully
mitigate memory corruption attacks as long as the attacker
cannot learn randomized kernel addresses through informa-
tion disclosure or side channel leaks [13]. A kernel pointer
leak will naturally lead to the bypass of KASLR, which we
will detail next.

The Linux kernel on x86-64 architecture implements
6 bits of entropy for the kernel code. The address range
of kernel text section is 1 GB (0xffffffff80000000 –
0xffffffffc0000000) and the base address of kernel text
is aligned by 16 MB. Hence, there are 64 virtual memory
addresses (1 GB ÷ 16 MB) where the kernel .text section
can be loaded. Consequently, on a condition that we can leak
a kernel pointer value pointing to a kernel function, we will
be able to calculate the KASLR slide-byte by simply sub-
tracting the 5th byte of the leaked pointer value from the 5th
byte of kernel text section’s start address. As an example, if
the leaked kernel pointer value is 0xffffffffa9a72cc0, the
KASLR slide-byte is 0xa9−0x80=0x29. Attackers can com-
pute randomized addresses of all kernel functions by using
the slide-byte.



Criteria Our approach Lu et al. [16] Xu et al. [25] Halvar Flake [11]

Types of unused memory targeted for generating exploits Stack Stack Stack, Heap Stack
Generating exploits for leaking sensitive data 3 7 3 7

Finding locations of uninitialized data 3 7 7 7
Reasoning about storing sensitive data at a given location 3 3 7 7

Table 2: Comparison of our proposed approach for uninitialized memory uses with the other approaches. Although there are
several prior research works that focused on exploiting uninitialized data uses (such as uninitialized pointer dereferences), there
has been no research effort on exploitations of stack-based information-leak bugs for leaking kernel pointer values.

Attacking the kernel stack. Another type of kernel pointer
values that we attempt to leak are pointer values that point
to the kernel stack. These kernel pointers can be used to
identify where the kernel stack is. The location of the kernel
stack must not be discovered by attackers because it is crit-
ical information that the attackers can use in their exploits
to defeat KASLR and achieve arbitrary kernel code execu-
tion. For example, the kernel stack contains return addresses
of kernel functions and values of the stack canary on which
the entire stack overflow protection mechanism relies. Addi-
tionally, at the bottom of the kernel stack, the thread_info
structure is stored (when CONFIG_THREAD_INFO_IN_TASK is
disabled). This data structure includes architecture-specific
thread-related information and a pointer to the task_struct
that holds process-related information.

3 Attack Model

We assume that the attacker targets an x86-64 Linux system
and tries to leak kernel pointer values that point to either
kernel functions or the kernel stack. As previously discussed
in Section 2.3, this step is very important for defeating modern
kernel defenses, such as KASLR, before mounting future
attacks.

To exploit information-leak bugs for leaking kernel pointer
values, an in-depth analysis on the target kernel and the
information-leaking bug is essential. Through this analysis,
the attacker obtains critical information for exploiting the vul-
nerability, such as what types of kernel pointer values can
be leaked, and where to place the kernel pointer values. We
assume that the attacker has access to a local machine with
the same Linux kernel and configuration as the target system,
which the attacker can use to conduct the analysis and per-
form the attack before launching it on the target system. The
attack should have full access to the local machine. We also
assume that the attacker possesses the required exploit that
triggers the information leak, which, at this moment, is likely
to not leak any sensitive information on the kernel stack. With
the analysis results, the attacker will generate exploits that
can execute on the target system without the root privilege
and reliably leak kernel pointer values.

4 Challenges in Exploitation

We demonstrated how kernel information leaks can occur via
uninitialized stack uses with Listing 1 and Listing 2. However,
simply triggering the vulnerabilities will most likely not copy
any sensitive data from the kernel stack to the user space.
Therefore, we must be able to manipulate data on the kernel
stack and ensure kernel pointer values (or part of a kernel
pointer value) are put in uninitialized variables on the stack.
To this end, we must analyze each vulnerability and generate
a proper exploit for it, which involves tackling the challenges
that Lu, et al. previously discussed [16]. It is worth mentioning
that our goal is different from theirs, and thus, we define a
series of challenges that we must overcome to successfully
leak kernel pointer values as follows.

C1: Computing the offset to uninitialized data from the
kernel stack base.
The first challenge to leaking kernel pointer values is
identifying the distance to an uninitialized memory cell
from the base address of the kernel stack, which we term
leak offset. Computing the leak offset allows us to find
the exact location where kernel pointer values should be
stored. We identify the leak offset through applying a
new technique, called footprinting, on the kernel stack
in Section 5.1.

C2: Storing kernel pointer values at a leak offset.
The next challenge is finding a way to place kernel
pointer values at the specific leak offset. To achieve this
goal, we propose two methods: (1) syscall enumeration
with the help of the Linux Test Project (LTP) to find
syscalls that can be used to store kernel pointer values
at the leak offset (see Section 5.2), and (2) kernel stack
spraying using the extended Berkeley Packet Filter (BPF)
(see Section 5.3).

C3: Handling data leaks that are less than 8 bytes.
On a 64-bit Linux kernel, when a kernel data leak is
larger than 8 bytes, we can obtain the value of the whole
pointer. However, in many vulnerabilities, the size of
memory leak is smaller than 8 bytes—we cannot obtain
a complete pointer value. For handing such small leaks,



we reason a possible range of the unleaked value through
the guess and check method, by which we can identify
the base address of the stack kernel. We discuss about
the small leaks in Section 5.4.

Ideally, in addition to the above challenges, we should also
prevent any future overwriting to kernel pointer values that
we stored in the stack before the data is copied to the user
space. This is to guarantee the successful exploitation of
information-leak bugs. Unfortunately, there is no practical
method to prevent such unexpected data overwriting without
hijacking the control flow of the kernel on the target system.
Thus, in this paper, we consider such cases where stored stack
values are later overwritten before returning to user space to
be unexploitable.

5 Exploiting Uninitialized Stack Variables

Our goal is to design a generic approach to exploit stack-based
information-leak vulnerabilities for leaking kernel pointer
values. In the rest of this section, we describe how we tackle
the challenges that are represented in Section 4.

5.1 Computing the Leak Offset
We propose a novel technique, called byte-level stack foot-
printing, to identify the distance to an uninitialized memory
address from the base address of the kernel stack. The mecha-
nism is illustrated in Figure 1.

First, we write offset information to each byte of the stack
from the base address by hooking a syscall. In 64-bit kernels,
the kernel stack is 16-byte or 8-byte aligned at a new frame
of a function starts and every pointer in the stack is stored at
8-byte aligned addresses. We store 1-byte offset information
which starts from 0x0 to 0xff in each byte for every 8 bytes.
Therefore, even though with 1-byte information leak, we can
identify exact offsets at which kernel pointer values should
be stored to leak them. This mechanism allows us to footprint
2,024 bytes of the kernel stack. Even though we cannot foot-
print the entire kernel stack, 2,024 bytes are enough to deal
with most syscalls (roughly 90% of syscalls only use less than
1,260 bytes of the stack).

Then we trigger an information-leak vulnerability. Because
the offset information has been filled into the stack, we can
directly check the offset. Lastly, we compute a leak offset by
using the offset information from the kernel. For example,
in Figure 1, the offset information copied from the kernel is
04, and thus, we need to find kernel pointer values that can
be stored at an offset (Base−24).

5.2 Extensive Syscall Testing with the LTP
Once the leak offset has been identified, we need to find a
syscall and its arguments that can be used to store a kernel

Kernel Stack

0x 0101 0101 0101 0101

0x 0202 0202 0202 0202

0x 0303 0303 0303 0303

0x 0404 0404 0404 0404

0x 0505 0505 0505 0505

0x 0606 0606 0606 0606

0x 0707 0707 0707 0707

0x 0808 0808 0808 0808

Base

Base - 8n ...

0x 0404 0404 ???? ????

0x ???? ???? ???? ????

(2) Trigger a vulnerability

(1) Fill the stack

(3) Check the footprint

(4) Compute a memory offset

Leak offset = Base - 24

0x ???? ???? ???? ????

Figure 1: The footprinting mechanism of the kernel stack to
compute a leak offset to an uninitialized memory area from
the stack base. With this mechanism, we can footprint 2,024
bytes of the stack (about 90% of syscalls use less than only
1,260 bytes of the stack).

Kernel Stack

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

Base

Base - 8n ...

Kernel pointer

(2) Execute a syscall

(1) Fill the stack

(3) Inspect the stack

(4) Record contexts

Offset : Base - 24
Type   : Kernel code
Syscall: mmap
Args   : 0,8,0,0,-1,0

Figure 2: The routine of our syscall testing framework. We
first fill the stack with a magic value. Then we execute a
syscall and find kernel pointer values stored in the kernel
stack. Lastly, we record the context information.

pointer value at each leak offset. For fast and reliable testing,
we leverage the Linux Test Project (LTP) which provides
various tools and concrete test cases for syscalls [14]. We
supplement three additional steps onto each syscall test case
in LTP: (1) spraying the stack with a magic value; (2) finding
kernel pointer values stored in the stack; and (3) recording
context information.

Figure 2 shows how our syscall testing framework finds
proper syscalls and arguments. Before executing a syscall, we
fill the kernel stack with a magic value to detect data changes
that are made by the execution of the syscall. Then we inspect
the kernel stack from the base address to find kernel pointer
values. To this end, we check every 8-byte from the stack
base whether each 8-byte value is in the address range of the
kernel stack or the kernel code region (the .text section). If
we find any kernel pointer value that points to the kernel stack
or kernel code, we record the name of the syscall with its
arguments and pointer type. From the recorded information,
we select proper context data (a syscall and arguments) that
can store a kernel pointer value at a specific leak offset.



1 static unsigned int __bpf_prog_run(void *ctx,
const struct bpf_insn *insn)

2 {
3 u64 stack[MAX_BPF_STACK / sizeof(u64)];
4 // 512-byte stack for a BPF program
5

6 u64 regs[MAX_BPF_REG], tmp;
7 ...

Listing 3: The main function for executing a BPF program.
It allocates the stack for BPF programs and execute them.

5.3 Stack Spraying via BPF
Designed to support filtering packets as requested by user-
space applications, the extended Berkeley Packet Filter (BPF)
is a virtual machine that resides inside the kernel [17]. The
BPF virtual machine takes as input BPF programs (that use a
special instruction set) when a user-space application attaches
the BPF program onto any socket. Then, the BPF program
executes when data passes through its attached socket and
filters data as programmed.

BPF programs can use stack memory, which is allocated
inside the kernel stack. Listing 3 shows the first part of the
bpf_prog_run function, which shows that the stack of any
BPF program is limited to 512 bytes. In the BPF virtual
machine, there is a special register, R10, called the frame
pointer. This register points to the top of the stack (the stack
base) that a BPF program uses. Therefore, the frame pointer
always points to a location on the kernel stack. We use this
frame pointer and the location of the stack of a BPF program
to spray the stack kernel.

With a carefully crafted BPF program, we can store the
frame pointer value to the stack of a BPF program until the
stack is full. In other words, we can store an address of the ker-
nel stack up to 512 bytes inside the kernel stack. Additionally,
the location of the stack local variable of the bpf_prog_run
function changes depending on functions previously executed.
Therefore, different execution paths from various syscalls
transmitting data using a socket to the bpf_prog_run func-
tion can change the stack spraying range (discussed in Sec-
tion 6.3 with a case study).

Listing 4 shows a part of a BPF program that sprays the
kernel stack with the frame pointer. On Line 20, we copy
the frame pointer (R10) to the R3. From Line 21, we spray
the stack of a BPF program (kernel stack) with the frame
pointer. It is worth noting that BPF virtual machine strictly
restricts behaviors of a BPF program for preventing security
issues by using the static verifier [7]. As examples of the
restrictions for every BPF program, all memory access is
bounded, there cannot be unreachable instructions, the frame
pointer (R10) is a read-only register and so forth. However,
the static verifier allows our BPF program to execute stack
spraying. We manually inspected the verifier and could not
find a rule for preventing spraying the frame pointer.

1 #define BPF_MOV64_REG(DST, SRC) \
2 ((struct bpf_insn) { \
3 .code = BPF_ALU64 | BPF_MOV | BPF_X , \
4 .dst_reg = DST, \
5 .src_reg = SRC, \
6 .off = 0, \
7 .imm = 0 })
8

9 #define BPF_STX_MEM(SIZE , DST, SRC, OFF) \
10 ((struct bpf_insn) { \
11 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM , \
12 .dst_reg = DST, \
13 .src_reg = SRC, \
14 .off = OFF, \
15 .imm = 0 })
16

17 void stack_spraying_by_bpf()
18 {
19 struct bpf_insn stack_spraying_insns[] = {
20 BPF_MOV64_REG(BPF_REG_3 , BPF_REG_10),
21 ...
22 BPF_STX_MEM(BPF_DW , BPF_REG_10 , BPF_REG_3 ,

-392),
23 BPF_STX_MEM(BPF_DW , BPF_REG_10 , BPF_REG_3 ,

-400),
24 BPF_STX_MEM(BPF_DW , BPF_REG_10 , BPF_REG_3 ,

-408),
25 ...
26 };
27 ...

Listing 4: A code snippet to perform kernel stack spraying
using BPF. We can spray the frame pointer of a BPF program
for 512 bytes on the kernel stack.

If we can store the frame pointer at a leak offset through
the stack spraying, we will be able to figure out where the
kernel stack is. Moreover, we can learn the memory layout of
the kernel stack when a syscall executes based on the location
of the kernel.

5.4 Handling Small Data Leaks
If an information-leak vulnerability leaks 8 bytes or more than
8 bytes of data, and we can store a kernel stack address at a
leak offset through spraying the stack with a BPF program,
it is possible to fully recover a kernel stack address. Unfor-
tunately, the sizes of leaks of many stack-based information-
leak vulnerabilities (roughly 60% of them) are smaller than 8
bytes [6]. Because the kernel stack is aligned by the size of a
page (e.g., 4KB by default), we need the most significant 52
bits of a kernel stack address (a 7-byte leak) to get the base
of the kernel stack. Therefore, leaks that are smaller than 7
bytes cannot be directly used to reveal the kernel stack base.

To handle this problem, we investigated the static verifier of
the BPF virtual machine to check if arithmetic operations on
the frame pointer is possible. We found that some arithmetic
operations (such as bitwise shift) are not possible, but add and
sub can be used with arbitrary immediate values. If the BPF



0x FFFF FF04 XXXX XXXX

0x FFFF FF03 XXXX XXXX

0x FFFF FF04 XXXX XXXX

(1) Trigger a vulnerability after stack spraying

Don’t know the unleaked data

with (FP)

(2) Trigger a vulnerability after stack spraying

(3) Trigger a vulnerability after stack spraying

with (FP — 0x0000 0000 3000 0000)

Unleaked data < 0x 3000 0000

Unleaked data > 0x 1234 0000

with (FP — 0x0000 0000 1234 0000)

0x FFFF FF04 2000 0000 : the frame pointer (FP)

Figure 3: The procedure for identifying a kernel stack address
using the kernel stack spraying via a BPF program. By check-
ing changes of the leaked data, we figure out possible ranges
of the unleaked data until the stack base address is revealed.

allowed bit shifting operations on the frame pointer value, we
would simply shift the frame pointer value so that unleaked
data can be placed at leak offset. We can only execute add
and sub operations on the frame pointer. However, these
operations can be executed even if the result is beyond the
range of the kernel stack. We also found that, after executing
these arithmetic operations, the modified frame pointer value
can be stored at the kernel stack.

By using this unrestricted behavior of a BPF program, we
deal with such small leaks using the guess and check method
to identify unleaked data of a kernel stack address, and, even-
tually, to reveal the layout of the kernel stack. This strategy
requires manipulating the frame pointer value and check how
known (leaked) data changes. Figure 3 illustrates how a 4-
byte information leak vulnerability can be used to identify
the base of the kernel stack by reasoning it. We first trigger
a vulnerability after spraying the kernel stack with the frame
pointer. Next, we execute an arithmetic operation (add or sub)
on the frame pointer with an arbitrary immediate value. This
modified frame pointer value is sprayed and we check the
leaked data by triggering the vulnerability. As shown in Fig-
ure 3, when we sprayed (FP−0x30000000), the leaked data
has changed from 0xffffff04 to 0xffffff03, by which
we can notice that the frame pointer value is smaller than
0xffffff0430000000). We repeat this reasoning procedure
until we can obtain the kernel stack base address: until the
most important 52 bits of a kernel stack address is revealed.

We note that, a security patch was applied to the upstream
Linux kernel at April 18th 2019 from the version 4.14.1132

to restrict arithmetic operations on the frame pointer for un-
privileged users so that the frame pointer value cannot go out
of the stack region.

2 https://lore.kernel.org/patchwork/patch/1063913/

6 Evaluation

We evaluate our proposed approach against real-world infor-
mation leak vulnerabilities in Linux kernels that involve uses
of uninitialized stack variables. In this section, we first present
the implementation of our tool in Section 6.1, then present the
evaluation results of our syscall-enumeration-based pointer
finding approach (in Section 6.2), and finally present case
studies of all five vulnerabilities that we evaluated against
(in Section 6.3).

6.1 Implementation

We implemented an analysis tool, which consists of a shared
library (KptrLib) and a loadable kernel module (KptrMod), to
automatically find leak offsets (as described in Section 5.1).
Then, we modified the Linux Test Project (LTP) to perform
the three additional steps using KptrMod, as discussed in
Section 5.2. We also implemented a tool for automatically
spraying the kernel stack and handling small leaks with a BPF
program (as described in Section 5.3 and Section 5.4).

Our tools can be easily used to analyze any given exploit
that triggers a information-leak vulnerability to evaluate its
exploitability regarding identifying the location of the kernel
stack, leaking kernel pointers, and finally bypassing KASLR.

6.2 Finding pointers with the LTP framework

First, we evaluate the effectiveness of our syscall enumeration
framework. To this end, we ran the modified LTP on Ubuntu
18.04 (with Linux kernel v4.15.0). For each kernel, we need
to run the LTP framework once to record context informa-
tion. Then, we can simply pick a context (a syscall and its
argument) from the recorded data for storing a kernel pointer
value at the identified leak offset.

Figure 4 illustrates that how many contexts (combinations
of a syscall and its arguments) can store sensitive pointer
values (pointing to the kernel code or stack) for each stack
memory offset less than 2,298. The experimental results show
that our modified LTP framework can find syscalls to store
kernel pointer values at almost every stack offset when offsets
are larger than the stack base + 440.

6.3 Case studies

To evaluate our approach, we select four CVEs and one fixed
bug (which a CVE entry has not been assigned) in the Linux
kernel and generate an exploit for each vulnerability according
to our analysis results.

Why not analyze more CVEs? While we agree that ana-
lyzing more CVEs will help better demonstrate the general-
ity and applicability of our proposed approach, during the
evaluation of our approach, we realized that it is extremely

https://lore.kernel.org/patchwork/patch/1063913/
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Figure 4: The experimental result of the modified LTP framework. We can find syscalls to store kernel pointer values at almost
every stack offset, when offsets are larger than 440 bytes and smaller than 2,298 bytes, through the LTP framework.

time-consuming to develop exploits for these CVEs to reli-
ably trigger the intended information-leaking bugs. Thus, we
deem it infeasible to evaluate our approach on more CVEs
for which no public exploits are available. We believe that
these randomly selected CVEs are covering all scenarios that
an attacker may face and are sufficient for demonstrating the
generality of our proposed approach.

6.3.1 CVE-2018-11508

As we have shown in Section 2.1, this vulnerability is caused
by an uninitialized stack variable (tai field of the txc struct).
The CVSS score of this vulnerability is 2.1 [4]. We speculate
that the impact of this vulnerability is deemed low because
the size of information leak is only 4 bytes, which are not
enough to host an entire pointer on 64-bit Linux systems.

After checking a leak offset through KptrLib and KptrMod,
we found that this vulnerability leaks 5th byte to 8th byte
of a pointer value. Also, we confirmed that a pointer value
that points to the kernel text can be stored at the leak offset
from the dataset recorded by the modified LTP in Section 6.2.
Consequently, we can successfully get the KASLR slide from
this vulnerability.

6.3.2 CVE-2016-4569 and fix 372f525

The CVSS score of CVE-2016-4569 is also 2.1. Our proposed
approach successfully exploits this bug and identifies the
KASLR slide.

The patch (fix 372f525) did not become an official CVE
entry. In the commit message of the patch, a kernel devel-
oper mentioned that “There should be no danger of breaking

userspace as the stack leak guaranteed that previously mean-
ingless random data was being returned.3” Unfortunately, our
proposed approach works against this bug and successfully
identifies the KASLR slide. This demonstrates the necessity
of our approach for proving the severity of information leak
bugs in Linux kernels.

6.3.3 CVE-2016-4486

With this CVE (CVSS score 2.1), we show that how a 4-byte
leak vulnerability can be exploited to identify the kernel stack
base.

For spraying the kernel stack using the BPF program as
in Listing 4, we first checked a leak offset of this vulnerability:
the leak offset is 1,568. We, then, executed the BPF program
by calling the sendmsg() syscall. However, we could not
clobber the offset because the BPF program sprays the kernel
stack from offset 1,032 to 1,544 when we use the sendmsg()
syscall. As we discussed in Section 5.3, there are various
syscalls that can trigger the bpf_prog_run() function and
each of them uses a different execution path to the BPF pro-
gram runner—the stack spraying range is different based on
the execution path. In this case, we found that we can clob-
ber the leak offset through the compat_sendmsg() syscall
by which we can spray the kernel stack from 1,064 to 1,576.
Consequently, we could identify the kernel stack base with
the guess and check method introduced in Section 5.4.

3https://github.com/torvalds/linux/commit/7c8a61d9ee

https://github.com/torvalds/linux/commit/7c8a61d9ee


1 /*file: net/rds/recv.c */
2 void rds_inc_info_copy(struct rds_incoming *inc,

struct rds_info_iterator *iter , __be32 saddr
, __be32 daddr , int flip)

3 {
4 struct rds_info_message minfo;
5 minfo.seq = be64_to_cpu(inc->i_hdr.h_sequence);
6 minfo.len = be32_to_cpu(inc->i_hdr.h_len);
7 minfo.tos = inc->i_conn ->c_tos;
8 if (flip) {
9 minfo.laddr = daddr;

10 minfo.faddr = saddr;
11 minfo.lport = inc->i_hdr.h_dport;
12 minfo.fport = inc->i_hdr.h_sport;
13 } else {
14 minfo.laddr = saddr;
15 minfo.faddr = daddr;
16 minfo.lport = inc->i_hdr.h_sport;
17 minfo.fport = inc->i_hdr.h_dport;
18 }
19 rds_info_copy(iter , *minfo , sizeof(minfo));
20 // The minfo struct is copied to the user-space

with the uninitialized ‘flag’ field

Listing 5: The vulnerable function of CVE-2016-5244. The
rds_info_copy function copies the minfo struct with flag
field uninitialized.

6.3.4 CVE-2016-5244

The CVSS score of this vulnerability is 5.0, which is signif-
icantly higher than the other CVEs that we evaluate in this
paper. Interestingly, we found that this one-byte leak vulnera-
bility cannot be exploited through our analysis.

Listing 5 shows the vulnerable function where the minfo
struct with the uninitialized flag field is copied to the user-
space through the rds_info_copy function at Line 22. How-
ever, the leak offset of the uninitialized field (1 byte) always
becomes 0 before the vulnerable function executes. There-
fore, the vulnerability always leaks 0, even though we can
successfully store kernel pointer values at the leak offset.

6.3.5 Summary

In our evaluation, we analyzed four CVEs and one patch in the
upstream Linux kernel as summarized in Table 3. We showed
that our approach can effectively generate exploits. Addition-
ally, the experimental results imply that our community is
in need of a more accurate exploitability evaluation system
for information leak bugs in Linux kernel so that security
implications of bugs can be estimated more correctly.

7 Discussion

We discuss about limitations of this paper and possible miti-
gations against stack-based information-leak vulnerabilities.

Vulnerability Leak Size CVSS Exploitation Result

CVE-2018-11580 4 2.1 Bypassed KASLR
CVE-2016-4569 4 2.1 Bypassed KASLR
CVE-2016-4486 4 2.1 Kernel stack base
Fixes: 372f525 4 N/A Bypassed KASLR

CVE-2016-5244 1 5.0 Failed

Table 3: Summary of exploitation results of vulnerabilities.
We analyzed 4 CVEs and 1 security patch which could not
become a CVE entry.

7.1 Limitations
We showed that small leaks can be exploited to identify the
KASLR slide (CVE-2018-11580) and the kernel stack base
(CVE-2016-4486). Even though our approach to identifying
the KASLR slide currently has no limitation in its usage, the
BPF-based approach to reveal the stack base cannot be used
in the Linux kernel from v.4.14.113 as in Section 5.4 (stack
spraying is still possible). Therefore, we need a more general
method to handle small leaks especially for revealing the stack
base. To overcome this limitation, one possible strategy is to
analyze the Linux kernel statically to find code gadgets which
can modify the kernel stack with user-controlled data. We
leave this limitation for future work.

Next, our approach analyzes information-leak vulnerabili-
ties using programs that can trigger a vulnerability. Hence, we
could not evaluate our approach in a large scale; Instead, we
show the effectiveness of our approach against a limited num-
ber of vulnerabilities. This is mainly because generating such
exploits manually is a time-consuming and complicated task.
Even though we know which function has a vulnerability, we
should find a proper context and create exploits to trigger it by
manually analyzing the kernel source code. To enable large-
scale experiments, our approach needs to be incorporated with
emerging automatic exploit generation technologies such as
FUSE [24].

7.2 Mitigating Uses of Uninitialized Memory
There are a couple of security features for uninitialized
memory uses in the Linux kernel. STACKLEAK clears
the kernel stack when syscalls return to the user-space,
which was integrated into the Linux kernel upstream
from v4.20 [20]. Recently, new configuration options,
CONFIG_INIT_ALL_MEMORY and CONFIG_INIT_ALL_STACK,
were introduced to force initialization of stack and heap vari-
ables [1]. In addition, many mitigation approaches have been
proposed to prevent uninitialized memory uses. Peiró, et al.
proposed a mechanism for detecting stack-based information-
leak bugs of the Linux kernel through static data flow anal-
ysis [19]. Garmany, et al. have proposed another static data
flow analysis framework that finds uninitialized stack mem-
ory uses after lifting binaries into an intermediate represen-



tation [12]. UniSan is a compiler-based approach to prevent
information leaks caused by uninitialized read [15]. UniSan
performs byte-level data flow analysis statically for OS ker-
nels and instruments code to initialize data if it leaves ker-
nel without initialization. The kernel memory sanitizer (KM-
SAN) is a tool to track uninitialized data to check whether
the data leaves OS kernels or not, which can be utilized with
fuzzers such as the syzkaller [5]. On the other hand, as a
runtime defense system for OS kernels, kMVX has been pro-
posed against information-leak vulnerabilities by leveraging
the multi-variant execution [18]

8 Related work

Exploiting uninitialized memory uses. Albeit there have
been research efforts on controlling uninitialized data to lever-
age it in other types of vulnerabilities, exploiting stack-based
information-leak vulnerability to leak sensitive information
such as pointer values pointing to the kernel stack or kernel
code has not been explored yet [11, 16, 25].

Thomas Dullien (also known as Halvar Flake) proposed a
search algorithm using call graphs for finding a function that
can have a stack frame overlapping with the target memory
address [11]. Lu, et al. proposed an automated method for
writing arbitrary data to uninitialized stack variables through
targeted stack spraying [16]. Xu, et al. showed common types
of uninitialized uses and their potential threats by exploiting
two uninitialized use vulnerabilities which can lead attackers
to gain arbitrary kernel code executions in the macOS [25].
Automating kernel exploitation. Automated kernel exploit
generation is a demanding task. In addition, even determining
the exploitability of bugs requires significant manual efforts.
Security researchers have been attempting to address these
problems. FUZE [24] proposed to identify useful system calls
for kernel use-after-free exploitations by leveraging fuzzing
and symbolic execution techniques. KEPLER [23] showed
a code-reuse exploit approach that converts a user-provided
control-flow hijacking primitives into arbitrary stack over-
flows, and thus, it bootstraps return-oriented programming
(ROP) payload. Chen et al. [9] proposed static and dynamic
analysis methods to find useful data structures for use-after-
free exploitations in the Linux kernel.

9 Conclusion

In this paper, we proposed a generic approach to exploit uses
of uninitialized stack data in Linux kernels to leak pointer val-
ues that are pointing to either kernel functions or to the kernel
stack. These leaked pointer values can then be used to defeat
KASLR and mount future attacks against Linux kernels. Our
evaluation results show that we can effectively analyze and
exploit stack-based information-leak vulnerabilities through
the proposed approach. Our proposed approach exposes the

actual exploitability and severity of information disclosure
bugs in Linux kernels and will raise awareness of the com-
munity on the security impact of these bugs. We expect our
findings will help adjust CVSS scoring for information leak
bugs inside Linux kernels.
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